
synchronization_primitives_w3.md 02/02/2019

1 / 2

Synchronization Primitives

Process Synchronization means sharing resources with processes such that chances of inconsistent
data is minimized with concurrent access to shared data.

Critical section: is part of the program that accesses shared resources.
Race condition is prevented by synchronization. This is when several processes access and
manipulate shared data at the same time.
Deadlock: at least two tasks is holding a lock that the other task holds. If nothing is done they
will wait forever

Atmoic operation is when an operation completes in its entirety without interruption.
Mutual exclusion is a mechanism to prevent data inconsistency. One one process is doing something
at a certain time

Also called mutex
POSIX: standard for maintaining compatibality between operating systems

 

Locks
primitive, minimal semantics
provide mutual exclusion
operations

acquire(lock);
release(lock);

downsides: can cause deadlock if not careful
Semaphores

easy to understand, hard to code
generalizes locks with an integer count variable and a thread queue
if integer count is negative then threads wait in queue till signalled
operations

wait: down, decrement, P(proberen)
block thread till semaphore is free and decrement variable

signal: up, increment, V(verhogen)
increment variable and unblock waiting thread

Condition Variables
allow threads to synchronize based on the value of the data
useful for implementing monitors

Monitors
high level, ideally language supported
abstraction that encapsulates shared data and operations in such a way that only one process
can be excuting in the monitor
only one process at a time can be active in the monitor. Local data accessed only by monitor’s
procedures. Process enters monitor by invoking one of its procedures. Other processes that
attempt to enter monitor are blocked.
operations

wait(): suspend the invoking process and release the lock



synchronization_primitives_w3.md 02/02/2019

2 / 2

signal(): resume exactly one suspended process which was waiting for its condition
variable (if any)
broadcast(): resume all suspended process which was waiting for its condition variable (if
any)

Types of monitors (who goes first)
Hoare monitor: waiter first, switches from caller to waiting thread. Easier to reason with,
but hard to implement
Mesa monitor: signaler first, signler continues while waiter placed on ready queue. Easier
to implement, and support additional operations like broadcast

Thread cycle
ready <--> running -> blocked -> ready


